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Abstraet--A new flat miniature heat pipe configuration for application to cooling electronic components 
is proposed for high heat fluxes (over 100 W cm -2) on the evaporator wall. The heat pipe contains the 
inverted meniscus type evaporator and axial capillary grooves covered with a porous plate for the liquid 
transport. Numerical results for the capillary limit and maximum heat flux, which has been calculated with 
respect to the formation of the vapor blanket in the porous structure of the evaporator, are presented for 

a copper-water miniature heat pipe with the external dimensions 2 × 7 × 120 mm. 

1. INTRODUCTION 

Flat miniature hea~L pipes with a porous plate and 
axial grooves for the liquid flow are proposed for the 
case when only one wall of the evaporator is heated 
(Fig. 1). The so-called "inverted meniscus scheme" 
(Raiff and Wayner [1], Feldman and Noreen [2], 
Solov'ev and Kovalev [3], Wulz and Embacher [4] and 
Khrustalev and Faghri [5]) is used in the evaporator in 
order to avoid boiling of the liquid in the liquid chan- 
nels. This circumstance and also high capillary poten- 
tial of the porous plate can enable operation of the 
heat pipe with extremely high heat fluxes, provided 
that the main constructive parameters are optimized 
and all of the technological problems have been 
resolved. For example, the effective pore radius of 
the copper porous plate, Rp, should be rather small 
(Freggens [6]), and the porous plate should be sintered 
with both grooved surfaces under pressure in order to 
decrease the contacl: thermal resistance. Because of a 
significant pressure, drop during the vapor flow 
through miniature channels, the evaporator length 
should not be large. By the same reason, in both the 
adiabatic and condenser sections, the fins between 
vapor channels are deleted in order to provide more 
space for the vapor flow, as shown in Figs. 1 and 2. 
The goal of this paper is to estimate the maximum 
heat flux which can be achieved on the heat pipe 
evaporator wall befi3re the dry out of the evaporator 
occurs. 

t This work was completed at Wright State University, 
Dayton, OH 45435, U.S.A. 

:~ Author to whom correspondence should be addressed. 

2. OPERATION OF THE HEAT PIPE 

Since the heat pipe configuration illustrated in Figs. 
1 and 2 contains some distinguishing features in com- 
parison with ordinary heat pipes, some explanations 
concerning the fluid circulation in it are useful for a 
better understanding of the numerical results. The 
axial liquid flow takes place along the liquid channels 
and through the porous plate which is pressed from 
both sides by the grooved walls of the heat pipe, as 
shown in Figs. 1 and 2. While heat is added on the 
evaporator wall, the liquid contained in the wetted 
porous structure evaporates from the surfaces of the 
liquid-vapor menisci in the vicinity of the solid fin 
penetrating the porous plate, Fig. 2(a). The vapor 
moves through the triangular-shaped channels (in the 
y-direction) towards the rectangular vapor channels 
and then along the heat pipe axis (z-coordinate) as 
can be seen from Fig. 1 where the coordinate system 
is shown. Since in the condenser section the heat pipe 
can be cooled from both sides, the condensation of 
the vapor on the walls of the vapor channel [Fig. 2(b)] 
takes place on the surfaces of the both porous plate 
and the heat pipe wall. The condensate forming on 
the surface of the porous plate is filtered through it 
mainly into the liquid channels because the pressure 
in the vapor channel is higher than that in the liquid 
channels. The condensate forming on the inner surface 
of the heat pipe wall flows under the influence of the 
surface tension in a thin film along the y-coordinate 
towards the corners of the vapor channel, where the 
bulk liquid resides, and along the z-coordinate (due 
to the vapor-liquid frictional interaction) toward the 
condenser end, which is partially blocked with the 
liquid. The blocking liquid is also filtered through the 
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A cross-sectional area 
D h hydraulic diameter 
f friction factor coefficient 
g gravity constant 
h heat transfer coefficient 
hfg latent heat of vaporization 
/~ curvature 
K permeability 
ke~ thermal conductivity of dry porous 

structure 
kw thermal conductivity of solid wall or 

fin 
L length 
Lp width of the porous plate 
N number of channels 
p pressure 
P~a bulk liquid pressure near the liquid- 

vapor interface 
Pva vapor pressure near the liquid-vapor 

interface 
3b Pvb SO V pvbdy/6vb, mean vapor pressure for 

a given 
Pd disjoining pressure 
Q total heat flow rate 
q heat flux 
Rmen radius of curvature of the meniscus 
R . . . . .  driving meniscus radius (at the 

surface of the porous plate in the 
evaporator) 

Rp pore radius 
Re ~Dh/v, Reynolds number 
T temperature 
tg depth of a groove 
tp total thickness of the porous plate 
tpen depth of the fin penetration into the 

porous plate 
tw thickness of the solid wall [Fig. 1 (c)] 
Uv area-averaged vapor velocity along the 

coordinate 
Uv ~ ~b Uvdp/6vb, mean vapor velocity 

along the ~t coordinate for a given 
Vv area-averaged vapor velocity along the 

p coordinate 
vva vapor blowing velocity (normal to the 

liquid-vapor boundary) 
rv area-averaged fluid velocity along a 

channel 

NOMENCLATURE 

W 
x,y,z 
Jc,p 

half-width of a groove 
cordinates (Fig. 2) 
coordinates (Fig. 3). 

Greek symbols 
half-angle of the triangular groove 

3vb thickness of the vapor blanket 
6 thickness of the vapor blanket at the 

fin top 
6~ thickness of the thin liquid evaporating 

film 
6ma x maximum thickness of the vapor 

blanket along the fin surface 
cos[arctan(d3~b/d.*)] 

~b inclination angle from horizontal 
~o porosity 
0men meniscus contact angle 
0mon,mi, minimum wetting contact angle 
# dynamic viscosity 
v kinematic viscosity 
p density 
a surface tension. 

Subscripts 
abs absolute 
cap capillary 
ch channel 
e evaporator 
ent enthalpy 
ex external 
eft effective 
1 liquid 
ft filtration 
loc local 
men meniscus 
min minimum 
max maximum 
o outlet 
pen penetration 
p pore 
s solid-liquid interface 
sat saturation 
t total 
v vapor 
vb vapor blanket 
w wall 
3 liquid film free surface. 

porous plate under the influence of the pressure drop 
between the vapor and the liquid channels. The fluid 
circulation is initiated by the capillary pressure, and 
the maximum heat transfer capacity of the heat pipe 
with small heat fluxes on the evaporator wall is usually 
restricted by the traditional capillary limit (Faghri 
[7]). 

With extremely high heat fluxes, a vapor blanket 
appears inside the uniform porous structure in the 
evaporator along the heated solid surface (Raiff and 
Wayner [1], Solov'yev and Kovalev [3], Wulz and 
Embacher [4], Khrustalev and Faghri [5]), as shown 
in Figs. 2(a) and 3(b). In this case, evaporation takes 
place into the dry region of  the porous structure at 
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Fig. 1. Flat miniature heat pipe with the inverted meniscus evaporator: (a) schematic of the heat pipe; (b) 
schematic of the fluid circulation in a characteristic element. 

the l iquid-vapor interface, the location of which shifts 
depending on the operational conditions. The heat is 
conducted to this interface from the heated surface 
through the dry region of the porous element, and the 
vapor flows mainly along the solid surface through 
this dry porous region towards the triangular vapor 
channel. The vapor flow is provided by the capillary 
pressure gradient clue to the difference in the curvature 
of the menisci alo:ag the liquid-vapor interface inside 
the porous structure. Therefore, with high heat fluxes, 
part of the capillary pressure is spent on the com- 
pensation of the pressure drop in the vapor flow 
through the dry porous region. Hence, the maximum 
heat flux for this configuration should be calculated 
with respect to the formation of this vapor blanket and 
can be less than that estimated from the traditional 
capillary limit. This statement is explained and illus- 
trated with the numerical results in the following sec- 
tions. 

3. CAPILLARY LIMIT FOR THE CASE OF SMALL 
HEAT FLUXES 

Because of the complicated configuration of the 
heat pipe in the consideration (Figs. 1 and 2), the 

capillary limit is estimated using the traditional sim- 
plified one-dimensional integral approach (Faghri 
[7]). According to this approach, a balance between 
the pressure drops in the fluid along the circulation 
path [Fig. 1 (b)] takes place in a heat pipe. For  the 
considered heat pipe this results in the following equa- 
tion 

Apv, l-Jf-apv,2-~Apv,3-JFApl--~Apft,e-~-Apft,c 

--}- Apg = APcap . . . .  • (1)  

All of the terms in equation (1) are considered below 
in detail. For the vapor flow along a heat pipe, it 
can be assumed that the inertia effects are mutually 
compensated in the evaporator and condenser sec- 
tions where acceleration and deceleration of the vapor 
occur (Dunn and Reay [8]). For  the liquid flow the 
inertia effects are negligible in comparison to those 
due to viscous losses (Khrustalev and Faghri [9]). The 
local hydraulic resistances for the vapor flow are also 
negligible. To estimate the pressure drops due to fric- 
tion in the channels with fluid flow, the following 
traditional equation is used : 
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Fig. 2. Cross-sections of the minature heat pipe: (a) evaporator; (b) adiabatic and condenser zones. 

where 

- 2  ' pvWv,,Jv,i 
Apv,¢ = 2 L e f ; , i -  (2) 

Oh,v,i 

( f  Re)v.i ( f  Re)v,Yv Lj . . . .  (3) 
Rev,i I'~v,iOh,v,i 

ai 
ff~v,i = hfgPvA,~,i (4) 

The subscript " i "  is needed because there are three 
types of vapor channels in the heat pipe, as shown in 
Fig. 1: triangular, rectangular (in the evaporator) and 
flat (in the adiabatic and condenser sections). For  
these channels i = 1, 2 and 3, respectively. Q~ = Q/Ni 
is the total heat input corresponding to one particular 
channel with the cross-sectional area Avj. The number  

of the/- type channels is denoted as Nt, and the total 
heat load of the heat pipe is Q. Substituting equations 
(3) and (4) into equation (2), gives 

Ap~,i = 2 ~ f  Re)~'i#v Loff i 
pvh,g 

(5) 

The difference between Apv, t is due to the number  
and geometry of the channels: Ni, Dh,v,i, A~,~, Lofr.~ and 
(fRe)v,~. These parameters are specified below for the 
three types of the vapor channels and also for the 
liquid channels. 

Apv, j in equation (1) is the pressure drop in the short 
triangular channels in the evaporator along the y- 
coordinate which is transverse to the axial z- 
coordinate. 
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Fig. 3. Schematic of the modeled element of the inverted 
meniscus type evaporator with the triangular fin: (a) with 

low heat flu~es; (b) with high heat fluxes. 

Leff, l = L2/2 W3 = tg3/tany 

a v ,  1 = (171/3 - -  tpe n tan 7)(tg3 - tpen) 

4 ( W  3 - -  tp~. t a n  y)(tg3 - -  tpen) 

Dh,v,~ = 2(W3 -- t~. tan 7) + 2(t~3 -- tp~.)/cos 7 

N~,~ = LoLd[2W~(W~- L:)] 

and (fRe)~,~ = 13.33 for 7 = 30 ° (Shah and Bhatti 
[101). 

Ap~,2 is the pressure drop in the rectangular channels 
in the evaporator where the vapor flows along the z- 
coordinate (Fig. 2). 

L~a;2 = L,,/2 Av,2 = 2W2(tg2--tpen) 

4 W2 (t~ - tp~) 
Dh,m = 21/1/2 + (Q2 -- try. ) 

N~,2 = 0.5L,,/(W2 + Lz). 

For  rectangular and flat configurations of a vapor 
channel, the value!; of  (fRe)~,~ can be defined using the 
following equation (Shah and Bhatti [lO]): 

(fRe)v,~ = 24(1 - 1.3553Ci+ 1.9467C 2 

-1 .7012C 3+0.9564C~-0 .2537C~)  (6) 

where C2 = 0.5(ts2-tp~n)/W2 and the Reynolds num- 
ber is based on the hydraulic diameter. 

Apv,3 is the pressure drop in the fiat vapor channel 
in the adiabatic and condenser sections where the 
vapor flows along the z-coordinate (Figs. 2 and 3). 

Left,3 = La+L¢/2  Av.3 = Lp(tg:--tpe.) 

2Lp(tg2-tocn) Nv,3 = 1 
Dh,v,3 -- Lp + (tg2 -- tpcn) 

and (fRe)v,3 is also defined from equation (6) where 
C3 = (tg2- tp¢n)/Lp. 

For  turbulent flow in a channel when 

QDh'v'i > 2300 (7) 
Rev,i - Nv,lhfgpvAv,iVv 

the following expression is used for (fRe)~,~: 

(fRe)~,i 0.75 = O.079Rev,i . (8) 

The pressure drop during the co-current flow of the 
liquid in the liquid channels and porous plate, Ap~, 
can be estimated as shown below. For  the liquid flow 
in a channel 

d p l  _ 2(fRe)iHl~i,eh (9 )  

dz Dh:: 

For  these channels 

L¢ff,~ = La+(Le+Lc) /2  AI -~- 2 W l t g l  

4 WI tgl 
Dh,t -- 2WI +tgl Ni = 0.5Lp/(WI +L1)  

and (fRe)j is defined from equation (6) where 
Q = 2WUtg~. For  the liquid flow in the porous plate 

dp~ = #lWl,p (10)  
dz K 

For any point on z in the adiabatic section the liquid 
pressure gradients along the z-coordinate in the 
porous plate and in the liquid channel [equations (9) 
and (10)] are equal, and they can be assumed to be 
approximately equal to the entire effective heat pipe 
length. In a steady-state situation, conservation of 
mass across any cross section of the heat pipe requires: 

Q 
-- pl[21~l.chWllgl +2~l,p/p(W~ +L~)]. (11) 

Njhfg 

From equations (10) and (11) it follows that 

O dp, Kto(Wl +L~) 
ff~l,ch -- 2Nlhfgpl WI tgl dz Pl W1 tgl (12) 

Then, substituting equation (12) into equation (9), the 
liquid pressure gradient during the co-current liquid 
flow in the channels and porous plate is 
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dp, [ 2(fRe)lKtp(W] + L ] ) l - '  Q(fRe),bt, 
d~-= 1+ D~,lW, tg~ j Nihf, plW, tglD~,l 

(13) 

and the pressure drop in the liquid, with respect to 
equation (13), is 

Apl = ~zLe~r.l = ~z (La Le + Lc'X + ~ - - ) .  (14) 

Apf, is the transverse pressure drop due to the fil- 
tration of the liquid through the porous plate in the 
evaporator and condenser sections. Using Darcy's law 
for this pressure drop we have: 

Apft., - I~Qtp Wl + L, (15) 
Khfgp]LpL¢ Wl 

Apft x _ 12jOtp Wi + L l  (16) 
KhfgPlLpLc WI 

For the case of operation against the gravity field 
with an inclination angle ~b, the so-called 'dry'  and 
'wet' points are usually situated at the end caps of the 
heat pipe (Faghri [7]). Therefore, 

Apg = pjg(L¢+Lc+La) sinqk (17) 

The capillary limit, Qcap, iS calculated from equa- 
tions (1)-(17) and the following condition, which is 
correct for the case when R . . . . . . .  ~ 

2a c o s  0men.mi n 
APcap . . . .  -- (18) 

Rp 

4. MAXIMUM HEAT TRANSFER CAPACITY FOR 
THE CASE OF HIGH HEAT FLUXES 

The distinguishing feature of the heat pipe in the 
consideration is its capability to withstand high heat 
fluxes on the evaporator wall. For  the case of 
extremely high heat fluxes, a dry zone (vapor blanket) 
appears in the porous structure along the heated solid 
surface [Fig. 3(b)]. The vapor flow in the vapor blan- 
ket towards the vapor channel takes place with a cor- 
responding pressure drop, APvb. The thickness of the 
vapor blanket, 6vb(2), can be calculated using the 
methodology by Khrustalev and Faghri [5]. The capil- 
lary pressure drop 2a/R . . . . . .  supports the fluid cir- 
culation in the heat pipe, described in the following 
section, while the capillary pressure drop 

Apvb = 2a(COS 0 . . . . .  in/Rp-- I/R . . . . .  ) (19) 

is expended to compensate for the pressure drop in 
the vapor flow through the dry porous region. R . . . . .  

is the radius of the liquid-vapor meniscus at the outlet 
of the vapor blanket into the vapor channel or, in 
other words, the driving meniscus radius at the surface 
of the porous plate in the evaporator. Since this pres- 
sure drop, APvb, should be also compensated by the 
capillary pressure, for the case of high heat fluxes 

in the evaporator, the pressure balance equation (1) 
should be rewritten as follows 

Apv,, + APv.2 + Apv,3 + Apl + Apftx 

2a 
+ Apft.c + Apg - R . . . . .  ' (20) 

It should be also noted that in the considered heat 
pipe, dry out can take place in the evaporator due to 
the penetration of the vapor into the liquid channels 
through the porous plate and the consequent obstruc- 
tion of the fluid circulation. It can happen when the 
thickness of the vapor blanket at the top of the fin, 6, 
is approximately equal to the minimum thickness of 
the porous plate, tp-- tpe n. Therefore, in order to deter- 
mine the effective maximum heat transfer capacity of 
the heat pipe, Q . . . .  equation (20) should be solved 
for R . . . . .  with different Q simultaneously with the 
procedure developed by Khrustalev and Faghri [5] to 
find 6 at the top of the solid heated fin. In the steady- 
state situation, these two problems (axial fluid cir- 
culation and formation of the vapor blanket) have to 
be solved with the same driving meniscus radius, 
R . . . . . .  and with the condition 

Q 
q.x - LeLp" (21) 

The largest Q at which these two problems can be 
solved simultaneously is the effective maximum heat 
transfer capacity of  the heat pipe, Qmax. The value of 
Q m a x  for the given operational conditions (which is 
less than Qoap) can be restricted by either of the two 
following conditions: 

6 = t p -  tp~, (22) 

Pvb --PI~ ~ 0. (23) 

The first condition, equation (22), corresponds to the 
penetration of the vapor into the liquid channels. The 
second condition, equation (23), describes the limiting 
case when the available capillary potential at the end 
of the vapor blanket is spent entirely on the vapor 
flow across the vapor blanket, and therefore, the larger 
heat fluxes can not be obtained with the same or larger 
vapor blanket thickness at the fin top, 6. Thus, for the 
case of the thick porous plate (tp--tr~n >> twn), Qmax is 
also less than Qcap because, although in this case the 
thickness of the vapor blanket can be comparatively 
large, the pressure drop across it can also be com- 
paratively large. 

Some explanations should be also given here about 
the utilized methodology by Khrustalev and Faghri 
[5] concerning formation of the vapor blanket in the 
porous structure with high heat fluxes. The model 
includes the following interconnected problems which 
are treated simultaneously in the frames of the numeri- 
cal analysis: 

(1) Heat transfer during evaporation from a pore. 
(2) Heat transfer and vapor flow in the dry region 
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of a porous structure with a side boundary, the 
location of which depends on the operational 
conditions. 

(3) heat conduction in a solid fin with a non-uni- 
form heat sink on the side surfaces. 

Only some distinguishing features of this model and 
several governing e, quations are represented here for 
a better understanding of the processes which take 
place in the evaporator and the numerical results of 
the present paper. During the evaporation from a 
pore, the temperature of the free thin liquid film 
surface, Tr, is affected by the disjoining and capillary 
pressures, and also depends on the value of the inter- 
facial resistance, which is defined for the case of a 
comparatively small heat flux at the interface, qr, by 
the following relation for the heat flux at the interface 
(Faghri [7]). 

( 2~ ) hrg [p .~ (Psat)b 1 (24) 

where Pv~ and (P~.t)~ are the saturation pressures cor- 
responding to T~ and at the thin liquid film interface, 
respectively. The relation between the saturation 
vapor pressure over the thin evaporating film, (P~at)~, 
affected by the disjoining pressure, Pd, and the normal 
saturation pressure corresponding to T~, p.dT~), is 
given by the extended Kelvin equation: 

"T" ex P(Psat)6--Psat(Th)+Pa--~rI~-] 
" PL J 

(25) 

Equation (25) reflects the fact that under the influence 
of the disjoining and capillary pressure, the liquid free 
surface saturation pressure, (P~,t),, is different from 
the normal saturation pressure, Psat(Ta), and varies 
along the thin film as well as the temperature of the 
liquid-vapor interface (Khrustalev and Faghri [11]). 
For  water, the following equation for the disjoining 
pressure was used in the present analysis (Holm and 
Goplen [12]): 

where a = 1.5336 and b = 0.0243. Then, the local heat 
transfer coefficier.t during evaporation from the 
porous surface is defined as 

h.,p ~R~(~:_ Tv) f f~oq, dA (27) 

where cp~ = Ap/A t is the surface porosity, which is the 
ratio of the surface of the pores to the total surface of 
the porous structure for a given cross-section (in this 
paper it is assumed that qh = ~o). Note that the dis- 
joining pressure affects the local evaporative heat 
transfer coefficient, he.p, as follows from equations 
(24)-(27). 

The heat conduction in the triangular metallic fin is 
described by the following equation [Fig. 3(b)], which 
was obtained as a result of an energy balance over a 
differential element: 

d2Tw dT ,  1 +(T,-Tw) kc~cos? _ 
d)c 2 + ~ ~ -~vb(:t)kw sin 7 0 

(28) 

where T, is the local temperature of the porous struc- 
ture at the liquid-vapor interface location. The local 
heat flux due to heat conduction across the dry region 
of the porous structure from the solid surface to the 
liquid-vapor interface where evaporation takes place 
is 

Tw(.t)- Ts(k) 
qloc(~) = keer (29) &b(:0 

Equation (29) is valid for the case kv << ke~ and 
cp,v(Tw- T~) << hfg. Hence, the mean velocity of the 
vapor flow for a given ~ along the solid surface is 
(using the mass and energy conservation balances): 

1 l" 
~v(.2) = 6vb(~hfgPv jo q,o¢(-~) d.~ 

ken f~ T. (~) - T~ (~) 
d~ (30) = 6~, (~ ,pv  3ol 6~b(.t) 

where tTv(~) is the mean vapor velocity along the Jr- 
coordinate. The modified Darcy's equations for the 
vapor flow in both directions through a porous struc- 
ture where the value of 0.55 is used for a dimensionless 
form-drag constant (Nield and Bejan [13]) are 

0 55 2 Op~b #~ " ~ pvUv (~) (31) o~ ~ Uv ( x )  - 

63Pvb #v 0.55 2 
Op -- K v~(p)+~---~p~vv(p) (32) 

where Uv and vv are the area-averaged vapor velocities. 
Now, the equation for T, should be derived. The local 
heat flux at the liquid-vapor interface due to the evap- 
oration of the liquid is: 

qlod:Q = [T,(~) - T~(:t)]h.,p(~). (33) 

Combining equations (29) and (33) because of the 
steady-state situation in the consideration, the 
expression for the local temperature of the porous 
structure at the liquid-vapor interface location is: 

T,(.~) -- Tw($C)+he'p(x)Tv(x)6~b($C)/k~ff (34) 
1 + h~,p(~)a.b(±)/k~ff 

It is anticipated that the l iquid-vapor interface can 
be stable provided it has the shape which eliminates 
the influence of the inertia effects due to acceleration 
of the vapor flow on the vapor pressure near this 
interface. While the steady-state situation is analyzed, 
the liquid pressure along the interface is constant, and 
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Table 1. Geometrical characteristics of the miniature heat pipe 

Wj W2 W3 tgl /g2 tg3 Lo 
0.1mm 0.3mm 0.23mm 0.3mm 0.7mm 0.4mm 10mm 

Lp L~ L 2 t w tp tpe n Rp 
6mm 0.1mm 0.3mm 0.3mm 0.6mm 0.2mm 0.02mm 

La L~ 
90 mm 20 mm 

K y 
1 x 10 -'2 m 2 30 ° 

the pressure losses in the vapor flow in both directions 
due to friction and solid obstacles are compensated 
by the capillary pressure, the vapor pressure gradient 
along the stable interface due to these inertia effects 
should be equal to zero. Since the velocity profile 
of  the vapor  flow along the 5:-coordinate is nearly 
uniform, it means that 

pv/~2 2 2 pvVva8 
2 + 2 = constant (35) 

where e = cos[arctan(drvb/ds:)] is the cosine of  the 
angle between the p coordinate and the normal to the 
l iquid-vapor  interface, and vva is the blowing velocity 
(normal to the l iquid-vapor interface): 

Vva = keg Tw--Ts (36) 
C]vbhfgp~ " 

Note that equation (35) is not  used for the fluid flow 
in the porous medium but describes the inertia effects 
at the adjustable l iquid-vapor  interface while the 
momentum equations for the vapor  flow in the porous 
medium are concerned. Equat ion (35) is necessary in 
order to find the equilibrium location of  the l iquid-  
vapor boundary. Equat ion (36) implies that the total 
amount  of  energy, transferred from the heated solid 
surface to the l iquid-vapor interface by the heat con- 
duction across the dry porous zone, is spent on vapo- 
rization of  the liquid. Al though the vapor  leaving the 
dry zone of  the porous structure is superheated, it is 
convenient to relate the local effective heat transfer 
coefficient to the vapor  saturation temperature 
because Cp.~(Tw-T~)<< hrg. Thus the local effective 
heat transfer coefficient corresponding to the point 
5: = Lvb (outlet of  the vapor  flow) is defined as: 

1 ~'L, Tw (5:) --  T, (5:) . .  
heft'pen W(T~---T,)oJo keff ~ (IX. 

(37) 

In the numerical results of  Khrustalev and Faghri  
[5], the pressure drop in the vapor  blanket along the 
fin surface with turbulent vapor  flow in the pores was 
many times larger than the estimated pressure drop in 
the liquid over the porous element. That  enabled the 
assumption of  the constant liquid pressure along the 
l iquid-vapor  boundary. 

5. NUMERICAL TREATMENT, RESULTS AND 
DISCUSSION 

The numerical results were obtained for the case of  
the miniature heat pipe, the characteristic dimensions 
of  which are listed in Table 1. The working fluid was 

water, 0 . . . . . .  i n  = 33 ° (Stepanov et al. [14]), ~ = 0.05 
(Paul [15]), ko~ = 10 W m - j  K - ' ,  kw = 379 W m - '  
K J, q~ = 0.35. The calculations were made with con- 
stant thermophysical properties corresponding to the 
operating temperature, Tv. The superheat of  the vapor 
in the dry zone of  the porous structure was neglected. 
Therefore, the maximum heat transfer capacity of  the 
heat pipe was underestimated because the vapor  
enthalpy heat transfer, Qv,ent, was not taken into 
account. The relative error for q . . . . . .  because of  this 
assumption can be estimated as follows 

Q . . . . .  C p , v  (To -- Tv) Cp.v qcx (38) 
Q ~ hfg 2 ~ 2hrg hcff.ex 

where To is the temperature of  the fin top. This error 
does not exceed 9% for the presented results. 

In order to find the effective maximum heat transfer 
capacity of  the heat pipe, Q . . . .  a graphical method 
was used as explained below. In the first step, the 
dependence of  the driving meniscus radius on heat 
load, R . . . . .  (Q), resulting from equation (20) was 
obtained and plotted for a given operating tempera- 
ture, Tv. In the second step, another dependence 
R . . . . .  (Q), resulting from the solution of  the vapor  
blanket formation for a given thickness of  the vapor  
blanket at the fin top, 6, was obtained and plotted in 
the same figure. The intersection of  these two curves 
gives the values of  Q and R . . . . .  (Q) which correspond 
to the steady-state with the chosen 6. Repeating this 
process with different values of  6, the function 6(Q) 
was obtained, and the maximum heat transfer 
capacity, Q . . . .  for the steady-state was defined with 
respect to the conditions (22) and (23). In Figs. 4-6 
the values of  the maximum heat transfer capacity, 
Q . . . .  found by this method for different operating 
temperatures, Tv, are indicated by the ring and square 
symbols for horizontal and vertical (the evaporator  
end of  the heat pipe is elevated) orientations, respec- 
tively. The bullets in these figures correspond to the 
situations when fi = t p - t p ~  n and Pvb--Pl,6 ~ 0 sim- 
ultaneously, which determines the absolute maximum 
heat transfer capacity in the evaporator,  Q . . . . .  bs, 
which can be reached in some cases as discussed 
further. For  Tv = 120°C, Qmax = Q . . . . .  b s  = 116.4 W 
for the horizontal orientation and Qm,x = 93 W for 
the vertical orientation, as shown in Fig. 4(a). For  
lower operating temperatures the maximum heat 
transfer capacity is smaller; for example, for 
Tv = 90°C at the steady-state Qmax = 26 W for the 
horizontal orientation, Qmax = 36 W for the vertical 
orientation, and Q . . . . .  bs = 45 W, as shown in Fig. 
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Fig. 4. Variation of the driving meniscus radius and thickness 
of the vapor blanket at the fin top with heat input: (a) 
T, = 120°C, K = 1.0 x 10 -l: m2; (b) T, = 90°C, 

K=  1.0x 10-12m2; (c) T, = 90°C, K= 0.5x 10-12m 2. 

4(b). While for the heat input of 45 W at T~ = 90°C, 
a steady-state does not exist (within the frames of the 
considered model), there is no restriction of the heat 
transfer because of the axial fluid circulation for the 
heat load lower th~.n 45 W. Therefore, an unstable 
regime of the heat pipe operation can occur with heat 
loads from 26 to 45 W for the horizontal orientation 
and from 36 to 45 W for the vertical orientation at 
Tv = 90°C. Physical models of unstable regimes are 
not obvious yet. Ku [16] referred to the regime when 
the vapor bubbles (instead of the vapor blanket) form 
at the heating surface and migrate until vented into 
vapor channel. Other models of the unstable regimes 
are also possible. Comparison of Figs. 4(b) and (c) 
shows that for a decreased permeability of the porous 
structure Qm~x is sraaller. It can be also seen from 
Figs. 4 and 5 that with the growth of the operating 
t e m p e r a t u r e  O m a x  increases. 

Analyzing Fig. 4(a), once can come to the con- 
clusion that the thickness of the vapor blanket at the 
fin top, 6, increases with the heat load, which should 
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Fig. 5. Variation of the driving meniscus radius and thickness 
of the vapor blanket at the fin top with heat input 

(K= 1.0x 10-~2 m2): (a) Tv = ll0°C; (b) Tv = 100°C. 

result in the decrease of the effective heat transfer 
coefficients and lead to larger temperature drops in 
the evaporator. These trends are presented in Fig. 
6 for the horizontal orientation. Two characteristic 
temperature drops are shown in Fig. 6(a), both being 
related to the operating temperature, Tv. The first is 
measured from the temperature of the external surface 
of the heat pipe wall, Tox, and the second is the super- 
heat of the solid particles of the porous structure at 
the liquid-vapor boundary of the vapor blanket over 
the operating temperature, Ts-  Tv, at the outlet of the 
vapor blanket into the vapor channel (~ = tpen/COS 7 ) "  

The last temperature drop does not increase with the 
heat flux on the external surface of the evaporator, 
qox, because for larger heat fluxes the radii of the 
menisci along the vapor blanket are smaller, which 
results in the increase of the local heat transfer 
coefficients during the evaporation from the pores. 
That is why Ts-- Tv < 20°C even for the enormously 
high heat fluxes of 200 W cm -2, which means that the 
evaporative regime is predominant at the boundary 
of the vapor blanket. However, a mixed regime of 
vaporization at this boundary when both the evap- 
oration and formation of the small vapor bubbles 
occur can be imagined without changing the entire 
physical model. The total temperature drop, Tex- Tv, 
consists of the several components: those in the met- 
allic wall and fin, across the vapor blanket, and that 
corresponding to the evaporation from the liquid- 
vapor interface, which can be expressed by the fol- 
lowing equation: 
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Fig. 6. Performance characteristics of the heat pipe evap- 
orator (Tv = 120°C, K = 1.0 x 10 -12 m 2, horizontal orien- 
tation): (a) temperature drops; (b) heat transfer coefficients; 

(c) vapor blanket thickness. 

Tex - Tv tw I"1/2 + L2 [ - tg2  - -  tg3 

q¢x k w + - - ~ - - - 2  L ~-~ 

2L2 tg3--tpen+ 1 W3 1 (39) 
+ L 2 + tp~, tan y kw h~,p¢~ tp+, tan~ " 

While the temperature drops in the metallic walls of 
the heat pipe are comparatively small, it can be seen 
in Fig. 6(a) that the main component of the total 
temperature drop is that across the dry porous struc- 
ture zone due to the heat conduction from the fin 
surface to the liquid-vapor interface. The total tem- 
perature drop increases progressively with the heat 
flux and reaches almost 200°C when q~x approaches 
200 W cm -2. This happens because the thickness of 
the vapor blanket, 6vb, increases and the effective heat 
transfer coefficients, hat, p+. and h~fr.ex, decrease with the 
heat flux as shown in Figs. 6(b) and (c). Therefore, 
the thermal conductivity of the porous structure plays 
an important role in the heat transfer in the evap- 
orator, h,a,r~n is the effective heat transfer coefficient 

300 
k .  (I) ( tredlUonol ~:nflhtrar l imi~  

° 

~ 100- 

(b) 
o 

8'0 ld0 ,;o 1,0 
T, (*C) 

Fig. 7. Dependence of the maximum heat flux in the heat 
pipe evaporator on the operating temperature 
(K = 1.0 x 10 -l~ m2): (a) horizontal orientation; (b) vertical 

orientation. 

concerning only the part of the fin penetrating the 
porous structure [equation (37)], and hoer, ox is the total 
effective heat transfer coefficient defined as follows : 

qex (40) 
heff.ex = T e x - - T , , "  

Two curves in Fig. 6(c) correspond to the minimum 
and maximum thicknesses of the vapor blanket at the 
fin top and at the vapor blanket outlet into the vapor 
channel, respectively. It follows from this figure that 
when the vapor blanket is comparatively thick, it is 
almost uniform along the heated surface. 

From Figs. 4 and 5, the dependencies of the 
maximum heat flux, which can be reached on the 
evaporator wall, on the operating temperature result 
for the cases of horizontal and vertical orientations, 
Fig. 7. The maximum heat fluxes, predicted by the 
model accounting for the vapor blanket formation in 
the porous structure, are much smaller than those 
obtained from the traditional capillary limit calcu- 
lations. The zone situated between the two lower 
curves in Fig. 7(a) supposedly corresponds to the 
unstable regime of the heat pipe operation. However, 
for the temperatures higher than 120°C only the stable 
regime takes place for all values of the heat flux which 
can be as high as 200 W cm -z. For operating tem- 
peratures lower than 100°C the maximum heat flux 
does not exceed 100 W cm -z. Figure 7(b) indicates 
that the heat pipe can successfully operate against the 
gravity field 
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6. CONCLUSIONS 

The results of  the numerical modeling of  the minia- 
ture copper-water  :heat pipe with the inverted men- 
iscus type evaporator  are summarized as follows: 

1. At  high heat fluxes part of  the available capillary 
potential is expended on the compensation of  the pres- 
sure drop in the vapor  flow through the dry region of  
the porous structure in the evaporator.  As a result 
of  this, the dry out o f  the inverted meniscus type 
evaporator  of  the heat pipe occurs with the maximum 
heat flux on the ewaporator wall which is about  two 
times smaller than that corresponding to the tra- 
ditionally calculated capillary limit. 

2. The proposed heat pipe configuration with the 
external dimension,; 2 x 7 × 120 mm is capable of  with- 
standing high heat fluxes on the evaporator  wall which 
can be about  200 W cm -2 for the horizontal orien- 
tation and 150 W cm -2 for the vertical orientation at 
the operating temperature of  120°C. 

3. The unstable operating regime can possibly 
occur in the heat pipe with heat fluxes on the evap- 
orator wall which are close to the maximum, especially 
for the operating temperatures lower than 100°C. 

4. The effective evaporative heat transfer coefficient 
decreases with the heat flux on the evaporator  external 
wall because of  the growth of  the vapor  blanket thick- 
ness inside the porous structure. 

5. With high heat fluxes, the temperature drop of  
the heat pipe evaporator  can be critical for the heat 
pipe applications. The main component  of  the tem- 
perature drop in ~:he evaporator  is that across the 
vapor  blanket due to the heat conduction from the 
heated solid surface to the l iquid-vapor  interface. 
Therefore, it is reasonable to chose the porous struc- 
ture with high thermal conductivity, permeability, and 
capillary potential. 
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